Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Infect Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567460

RESUMEN

BACKGROUND: After months of few mpox cases, an increased number of cases were reported in Chicago during May 2023; predominantly among fully vaccinated patients. We investigated the outbreak scope, differences between vaccinated and unvaccinated patients, and hypotheses for monkeypox virus (MPXV) infection after vaccination. METHODS: We interviewed patients and reviewed medical records to assess demographic, behavioral, and clinical characteristics, mpox vaccine status, and vaccine administration routes. We evaluated serum antibody levels after infection and compared patient viral genomes with MPXV sequences in available databases. We discussed potential vaccine compromise with partners who manufactured, handled, and administered vaccine associated with breakthrough infections. RESULTS: During March 18-June 27, 2023, we identified 49 mpox cases; 57% of these mpox patients were fully vaccinated (FV). FV patients received both JYNNEOS doses subcutaneously (57%), intradermally (7%), or via heterologous administration (36%). FV patients had more median sex partners (3, IQR=1-4) versus not fully vaccinated (NFV) patients (1, IQR=1-2). Thirty-six of 37 sequenced specimens belonged to lineage B.1.20 of clade IIb MPXV, which did not demonstrate any amino acid changes relative to B.1, the predominant lineage from May 2022. Vaccinated patients demonstrated expected humoral antibody responses; none were hospitalized. No vaccine storage excursions were identified. Approximately 63% of people at risk for mpox in Chicago were FV during this period. CONCLUSIONS: Our investigation indicated cases were likely due to frequent behaviors associated with mpox transmission, even with relatively high vaccine effectiveness and vaccine coverage. Cases after vaccination might occur in similar populations.

2.
J Infect Dis ; 229(Supplement_2): S219-S228, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38243606

RESUMEN

BACKGROUND: Pathology and Monkeypox virus (MPXV) tissue tropism in severe and fatal human mpox is not thoroughly described but can help elucidate the disease pathogenesis and the role of coinfections in immunocompromised patients. METHODS: We analyzed biopsy and autopsy tissues from 22 patients with severe or fatal outcomes to characterize pathology and viral antigen and DNA distribution in tissues by immunohistochemistry and in situ hybridization. Tissue-based testing for coinfections was also performed. RESULTS: Mucocutaneous lesions showed necrotizing and proliferative epithelial changes. Deceased patients with autopsy tissues evaluated had digestive tract lesions, and half had systemic tissue necrosis with thrombotic vasculopathy in lymphoid tissues, lung, or other solid organs. Half also had bronchopneumonia, and one-third had acute lung injury. All cases had MPXV antigen and DNA detected in tissues. Coinfections were identified in 5 of 16 (31%) biopsy and 4 of 6 (67%) autopsy cases. CONCLUSIONS: Severe mpox in immunocompromised patients is characterized by extensive viral infection of tissues and viremic dissemination that can progress despite available therapeutics. Digestive tract and lung involvement are common and associated with prominent histopathological and clinical manifestations. Coinfections may complicate mpox diagnosis and treatment. Significant viral DNA (likely correlating to infectious virus) in tissues necessitates enhanced biosafety measures in healthcare and autopsy settings.


Asunto(s)
Coinfección , Mpox , Humanos , Monkeypox virus , Huésped Inmunocomprometido , Antígenos Virales , ADN Viral
3.
J Infect Dis ; 229(Supplement_2): S121-S131, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37861379

RESUMEN

Orthopoxviruses have repeatedly confounded expectations in terms of the clinical illness they cause and their patterns of spread. Monkeypox virus (MPXV), originally characterized in the late 1950s during outbreaks among captive primates, has been recognized since the 1970s to cause human disease (mpox) in West and Central Africa, where interhuman transmission has largely been associated with nonsexual, close physical contact. In May 2022, a focus of MPXV transmission was detected, spreading among international networks of gay, bisexual, and other men who have sex with men. The outbreak grew in both size and geographic scope, testing the strength of preparedness tools and public health science alike. In this article we consider what was known about mpox before the 2022 outbreak, what we learned about mpox during the outbreak, and what continued research is needed to ensure that the global public health community can detect, and halt further spread of this disease threat.


Asunto(s)
Mpox , Orthopoxvirus , Minorías Sexuales y de Género , Masculino , Animales , Humanos , Homosexualidad Masculina , Brotes de Enfermedades , Monkeypox virus
4.
Emerg Infect Dis ; 29(12): 2426-2432, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856204

RESUMEN

During the 2022 multinational outbreak of monkeypox virus (MPXV) infection, the antiviral drug tecovirimat (TPOXX; SIGA Technologies, Inc., https://www.siga.com) was deployed in the United States on a large scale for the first time. The MPXV F13L gene homologue encodes the target of tecovirimat, and single amino acid changes in F13 are known to cause resistance to tecovirimat. Genomic sequencing identified 11 mutations previously reported to cause resistance, along with 13 novel mutations. Resistant phenotype was determined using a viral cytopathic effect assay. We tested 124 isolates from 68 patients; 96 isolates from 46 patients were found to have a resistant phenotype. Most resistant isolates were associated with severely immunocompromised mpox patients on multiple courses of tecovirimat treatment, whereas most isolates identified by routine surveillance of patients not treated with tecovirimat remained sensitive. The frequency of resistant viruses remains relatively low (<1%) compared with the total number of patients treated with tecovirimat.


Asunto(s)
Mpox , Humanos , Estados Unidos/epidemiología , Antivirales/farmacología , Antivirales/uso terapéutico , Benzamidas/uso terapéutico , Bioensayo , Monkeypox virus
5.
Emerg Infect Dis ; 29(11): 2307-2314, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832516

RESUMEN

Since May 2022, mpox has been identified in 108 countries without endemic disease; most cases have been in gay, bisexual, or other men who have sex with men. To determine number of missed cases, we conducted 2 studies during June-September 2022: a prospective serologic survey detecting orthopoxvirus antibodies among men who have sex with men in San Francisco, California, and a retrospective monkeypox virus PCR testing of swab specimens submitted for other infectious disease testing among all patients across the United States. The serosurvey of 225 participants (median age 34 years) detected 18 (8.0%) who were orthopoxvirus IgG positive and 3 (1.3%) who were also orthopoxvirus IgM positive. The retrospective PCR study of 1,196 patients (median age 30 years; 54.8% male) detected 67 (5.6%) specimens positive for monkeypox virus. There are likely few undiagnosed cases of mpox in regions where sexual healthcare is accessible and patient and clinician awareness about mpox is increased.


Asunto(s)
Mpox , Orthopoxvirus , Minorías Sexuales y de Género , Humanos , Masculino , Estados Unidos/epidemiología , Adulto , Femenino , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiología , Prevalencia , Homosexualidad Masculina , Estudios Prospectivos , Estudios Retrospectivos , Brotes de Enfermedades
8.
MMWR Morb Mortal Wkly Rep ; 72(20): 547-552, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37200231

RESUMEN

Monkeypox (mpox) is a serious viral zoonosis endemic in west and central Africa. An unprecedented global outbreak was first detected in May 2022. CDC activated its emergency outbreak response on May 23, 2022, and the outbreak was declared a Public Health Emergency of International Concern on July 23, 2022, by the World Health Organization (WHO),* and a U.S. Public Health Emergency on August 4, 2022, by the U.S. Department of Health and Human Services.† A U.S. government response was initiated, and CDC coordinated activities with the White House, the U.S. Department of Health and Human Services, and many other federal, state, and local partners. CDC quickly adapted surveillance systems, diagnostic tests, vaccines, therapeutics, grants, and communication systems originally developed for U.S. smallpox preparedness and other infectious diseases to fit the unique needs of the outbreak. In 1 year, more than 30,000 U.S. mpox cases were reported, more than 140,000 specimens were tested, >1.2 million doses of vaccine were administered, and more than 6,900 patients were treated with tecovirimat, an antiviral medication with activity against orthopoxviruses such as Variola virus and Monkeypox virus. Non-Hispanic Black (Black) and Hispanic or Latino (Hispanic) persons represented 33% and 31% of mpox cases, respectively; 87% of 42 fatal cases occurred in Black persons. Sexual contact among gay, bisexual, and other men who have sex with men (MSM) was rapidly identified as the primary risk for infection, resulting in profound changes in our scientific understanding of mpox clinical presentation, pathogenesis, and transmission dynamics. This report provides an overview of the first year of the response to the U.S. mpox outbreak by CDC, reviews lessons learned to improve response and future readiness, and previews continued mpox response and prevention activities as local viral transmission continues in multiple U.S. jurisdictions (Figure).


Asunto(s)
Mpox , Minorías Sexuales y de Género , Masculino , Humanos , Estados Unidos/epidemiología , Homosexualidad Masculina , Mpox/epidemiología , Brotes de Enfermedades/prevención & control , Centers for Disease Control and Prevention, U.S.
9.
Clin Infect Dis ; 77(2): 298-302, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-36916132

RESUMEN

We assessed mpox virus prevalence in blood, pharyngeal, and rectal specimens among persons without characteristic rash presenting for JYNNEOS vaccine. Our data indicate that the utility of risk-based screening for mpox in persons without skin lesions or rash via pharyngeal swabs, rectal swabs, and/or blood is likely limited.


Asunto(s)
Exantema , Mpox , Virosis , Humanos , District of Columbia , Exantema/etiología , Vacunas Atenuadas
10.
Lancet Microbe ; 4(4): e277-e283, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898398

RESUMEN

The relative contribution of the respiratory route to transmission of mpox (formerly known as monkeypox) is unclear. We review the evidence for respiratory transmission of monkeypox virus (MPXV), examining key works from animal models, human outbreaks and case reports, and environmental studies. Laboratory experiments have initiated MPXV infection in animals via respiratory routes. Some animal-to-animal respiratory transmission has been shown in controlled studies, and environmental sampling studies have detected airborne MPXV. Reports from real-life outbreaks demonstrate that transmission is associated with close contact, and although it is difficult to infer the route of MPXV acquisition in individual case reports, so far respiratory transmission has not been specifically implicated. Based on the available evidence, the likelihood of human-to-human MPXV respiratory transmission appears to be low; however, studies should continue to assess this possibility.


Asunto(s)
Mpox , Animales , Humanos , Mpox/epidemiología , Monkeypox virus , Modelos Animales , Probabilidad
12.
MMWR Morb Mortal Wkly Rep ; 72(3): 68-72, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656790

RESUMEN

Monkeypox (mpox) is a zoonotic disease caused by Monkeypox virus (MPXV), an Orthopoxvirus; the wild mammalian reservoir species is not known. There are two genetic clades of MPXV: clade I and clade II (historically found in central and west Africa, respectively), with only Cameroon reporting both clades (1). Human cases have historically been reported from 1) mostly rural, forested areas in some central and west African countries; 2) countries reporting cases related to population migration or travel of infected persons; and 3) exposure to imported infected mammals (2). The annual number of cases in Africa has risen since 2014 and cumulatively surpassed reports from the previous 40 years for most countries. This reemergence of mpox might be due to a combination of environmental and ecological changes, animal or human movement, the cessation of routine smallpox vaccination since its eradication in 1980, improvements in disease detection and diagnosis, and genetic changes in the virus (2). This report describes the epidemiology of mpox since 1970 and during 2018-2021, using data from national surveillance programs, World Health Organization (WHO) bulletins, and case reports, and addresses current diagnostic and treatment challenges in countries with endemic disease. During 2018-2021, human cases were recognized and confirmed in six African countries, with most detected in the Democratic Republic of the Congo (DRC) and Nigeria. The reemergence and increase in cases resulted in its being listed in 2019 as a priority disease for immediate and routine reporting through the Integrated Disease Surveillance and Response strategy in the WHO African region.* In eight instances, patients with mpox were identified in four countries outside of Africa after travel from Nigeria. Since 2018, introductory and intermediate training courses on prevention and control of mpox for public health and health care providers have been available online at OpenWHO.†,§ The global outbreak that began in May 2022¶ has further highlighted the need for improvements in laboratory-based surveillance and access to treatments and vaccines to prevent and contain the infection, including in areas of Africa with endemic mpox.


Asunto(s)
Mpox , Animales , Humanos , Mpox/epidemiología , Monkeypox virus/genética , Zoonosis , Salud Pública , Nigeria , Mamíferos
13.
Science ; 378(6619): 560-565, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36264825

RESUMEN

Monkeypox is a viral zoonotic disease endemic in Central and West Africa. In May 2022, dozens of non-endemic countries reported hundreds of monkeypox cases, most with no epidemiological link to Africa. We identified two lineages of monkeypox virus (MPXV) among two 2021 and seven 2022 US monkeypox cases: the major 2022 outbreak variant called B.1 and a minor contemporaneously sampled variant called A.2. Analyses of mutations among these two variants revealed an extreme preference for GA-to-AA mutations indicative of human APOBEC3 cytosine deaminase activity among Clade IIb MPXV (previously West African, Nigeria) sampled since 2017. Such mutations were not enriched within other MPXV clades. These findings suggest that APOBEC3 editing may be a recurrent and a dominant driver of MPXV evolution within the current outbreak.


Asunto(s)
Desaminasas APOBEC , Interacciones Huésped-Patógeno , Monkeypox virus , Mpox , Edición de ARN , Humanos , Mpox/enzimología , Mpox/virología , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Nigeria/epidemiología , Estados Unidos/epidemiología , Mutación , Evolución Molecular , Desaminasas APOBEC/metabolismo , Adenosina/genética , Citidina/genética
14.
MMWR Morb Mortal Wkly Rep ; 71(36): 1155-1158, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074752

RESUMEN

Since May 2022, approximately 20,000 cases of monkeypox have been identified in the United States, part of a global outbreak occurring in approximately 90 countries and currently affecting primarily gay, bisexual, and other men who have sex with men (MSM) (1). Monkeypox virus (MPXV) spreads from person to person through close, prolonged contact; a small number of cases have occurred in populations who are not MSM (e.g., women and children), and testing is recommended for persons who meet the suspected case definition* (1). CDC previously developed five real-time polymerase chain reaction (PCR) assays for detection of orthopoxviruses from lesion specimens (2,3). CDC was granted 510(k) clearance for the nonvariola-orthopoxvirus (NVO)-specific PCR assay by the Food and Drug Administration. This assay was implemented within the Laboratory Response Network (LRN) in the early 2000s and became critical for early detection of MPXV and implementation of public health action in previous travel-associated cases as well as during the current outbreak (4-7). PCR assays (NVO and other Orthopoxvirus laboratory developed tests [LDT]) represent the primary tool for monkeypox diagnosis. These tests are highly sensitive, and cross-contamination from other MPXV specimens being processed, tested, or both alongside negative specimens can occasionally lead to false-positive results. This report describes three patients who had atypical rashes and no epidemiologic link to a monkeypox case or known risk factors; these persons received diagnoses of monkeypox based on late cycle threshold (Ct) values ≥34, which were false-positive test results. The initial diagnoses were followed by administration of antiviral treatment (i.e., tecovirimat) and JYNNEOS vaccine postexposure prophylaxis (PEP) to patients' close contacts. After receiving subsequent testing, none of the three patients was confirmed to have monkeypox. Knowledge gained from these and other cases resulted in changes to CDC guidance. When testing for monkeypox in specimens from patients without an epidemiologic link or risk factors or who do not meet clinical criteria (or where these are unknown), laboratory scientists should reextract and retest specimens with late Ct values (based on this report, Ct ≥34 is recommended) (8). CDC can be consulted for complex cases including those that appear atypical or questionable cases and can perform additional viral species- and clade-specific PCR testing and antiorthopoxvirus serologic testing.


Asunto(s)
Enfermedades Transmisibles , Mpox , Orthopoxvirus , Minorías Sexuales y de Género , Animales , Niño , Femenino , Homosexualidad Masculina , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Orthopoxvirus/genética , Viaje , Estados Unidos/epidemiología
15.
MMWR Morb Mortal Wkly Rep ; 71(28): 904-907, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35834423

RESUMEN

As part of public health preparedness for infectious disease threats, CDC collaborates with other U.S. public health officials to ensure that the Laboratory Response Network (LRN) has diagnostic tools to detect Orthopoxviruses, the genus that includes Variola virus, the causative agent of smallpox. LRN is a network of state and local public health, federal, U.S. Department of Defense (DOD), veterinary, food, and environmental testing laboratories. CDC developed, and the Food and Drug Administration (FDA) granted 510(k) clearance* for the Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set (non-variola Orthopoxvirus [NVO] assay), a polymerase chain reaction (PCR) diagnostic test to detect NVO. On May 17, 2022, CDC was contacted by the Massachusetts Department of Public Health (DPH) regarding a suspected case of monkeypox, a disease caused by the Orthopoxvirus Monkeypox virus. Specimens were collected and tested by the Massachusetts DPH public health laboratory with LRN testing capability using the NVO assay. Nationwide, 68 LRN laboratories had capacity to test approximately 8,000 NVO tests per week during June. During May 17-June 30, LRN laboratories tested 2,009 specimens from suspected monkeypox cases. Among those, 730 (36.3%) specimens from 395 patients were positive for NVO. NVO-positive specimens from 159 persons were confirmed by CDC to be monkeypox; final characterization is pending for 236. Prompt identification of persons with infection allowed rapid response to the outbreak, including isolation and treatment of patients, administration of vaccines, and other public health action. To further facilitate access to testing and increase convenience for providers and patients by using existing provider-laboratory relationships, CDC and LRN are supporting five large commercial laboratories with a national footprint (Aegis Science, LabCorp, Mayo Clinic Laboratories, Quest Diagnostics, and Sonic Healthcare) to establish NVO testing capacity of 10,000 specimens per week per laboratory. On July 6, 2022, the first commercial laboratory began accepting specimens for NVO testing based on clinician orders.


Asunto(s)
Técnicas y Procedimientos Diagnósticos , Brotes de Enfermedades , Mpox , Brotes de Enfermedades/prevención & control , Humanos , Laboratorios , Mpox/diagnóstico , Mpox/epidemiología , Orthopoxvirus , Estados Unidos/epidemiología , Virus de la Viruela
16.
Sci Rep ; 12(1): 9403, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672343

RESUMEN

Human rabies remains a globally significant public health problem. Replacement of polyclonal anti-rabies immunoglobulin (RIG), a passive component of rabies post-exposure prophylaxis (PEP), with a monoclonal antibody (MAb), would eliminate the cost and availability constraints associated with RIG. Our team has developed and licensed a human monoclonal antibody RAB1 (Rabishield©), as the replacement for RIG where canine rabies is enzootic. However, for the highly diverse rabies viruses of North America, a cocktail containing two or more MAbs targeting different antigenic sites of the rabies glycoprotein should be included to ensure neutralization of all variants of the virus. In this study, two MAb cocktails, R172 (RAB1-RAB2) and R173 (RAB1-CR57), were identified and evaluated against a broad range of rabies variants from North America. R173 was found to be the most potent cocktail, as it neutralized all the tested North American RABV isolates and demonstrated broad coverage of isolates from both terrestrial and bat species. R173 could be a promising candidate as an alternative or replacement for RIG PEP in North America.


Asunto(s)
Antineoplásicos Inmunológicos , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Perros , Humanos , Profilaxis Posexposición
17.
PLoS One ; 16(12): e0260487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34910739

RESUMEN

At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the "bulk" manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3' end of the N3 probe and the 3' end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the "bulk" material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC.


Asunto(s)
COVID-19 , Cartilla de ADN , Reacciones Falso Positivas , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2
18.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34547055

RESUMEN

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Asunto(s)
Modelos Animales de Enfermedad , Viruela , Animales , Humanos , Ratones , Virus de la Viruela
19.
mSphere ; 6(1)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536322

RESUMEN

Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 105 plaque-forming units (PFU; 90% lethal dose [LD90]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID-1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID-1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [Cmax]) and the time of the last quantifiable concentration (AUClast) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival.IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak.


Asunto(s)
Citosina/análogos & derivados , Monkeypox virus/efectos de los fármacos , Organofosfonatos/farmacología , Organofosfonatos/farmacocinética , Viruela/tratamiento farmacológico , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Benzamidas/farmacocinética , Benzamidas/farmacología , Citosina/farmacocinética , Citosina/farmacología , Modelos Animales de Enfermedad , Perros , Femenino , Isoindoles/farmacocinética , Isoindoles/farmacología , Masculino , Virus de la Viruela/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA